Water Quality and Hydrologic Issues Related to the Pebble Project, Alaska

Ann Maest, PhD, Cam Wobus, PhD, and Connie Travers, MS Stratus Consulting, Inc. Boulder, CO

27 January 2011

STRATUS CONSULTING

Overview Environmental record at large hardrock mines Overview of hydrology and geochemistry at Pebble Project - Purpose: evaluate site-specific vulnerabilities of migratory and resident fish to mining impacts STRATUS CONSULTING EPA-7609-0007122 00002

- Examined performance at large hardrock mines in the U.S.
 - 183 major mines, 137 NEPA mines
 - 71 NEPA mines reviewed
- 104 EISs reviewed for 71 mines
- Compared EIS predictions to actual water quality for 25 case study mines

Source: Kuipers and Maest, 2006

STRATUS CONSULTING

Predicted vs. Actual Water Quality

Performance Evaluation: Post-Mining Surface Water Quality

	# Mines	Percent (%) with Impact to Surface Water	Percent (%) with Exceedences of Standards in Surface Water	Percent (%) with Exceedences that Predicted no Exceedences
Mines close to surface water with mod/high ADP or CLP	13	92 (12/13)	85 (11/13)	91 (10/11)
All case study mines	25	64 (16/25)	60 (15/25)	73 (11/15)

Performance failures at virtually all case study mines in proximity to surface water. Primary causes of failure: inadequate mitigation measures and geochemical characterization.

- Proximity to sensitive environmental biota and water resources
- High degree of hydrologic connection
 - Increases transport of heavy metals low ability to control wastes
 - Watershed coverage (with wastes) changes hydrograph and upwelling areas
- High potential to leach contaminants
 - Ore and wastes will generate acid and leach heavy metals
- Low buffering in streams
 - Low hardness, alkalinity, DOM in streams

STRATUS CONSULTING

Site Hydrogeology

- 200+ ft of highly permeable sand and gravel
 - Easy movement of contaminants
- Unlined tailings storage plans rely on low K materials
 - Not present beneath all tailings areas
- Resource estimates have grown since 2006 water rights application (only for Pebble West!)
 - Mine facility footprints will be larger

Legend

Sand, silty sand
Clay, silty clay
Gravel, gravelly sand
No recovery
Bedrock
Borehole screen
Water level elevation
(data from August 14-16, 2006)

Sources: WMC, 2008; NDM, 2006 SFK water rights application

Natural Water Transfers

- ~25 cfs of surface water moves from SF Koktuli to
 Upper Talarik basin –contaminants will cross basins
- Groundwater upwelling salmon spawning reduced if upwelling reduced

Source: WMC, 2008

Surface Water and Groundwater Connections (just upstream from proposed TSF)

- Deep groundwater responds to changes in surface water flow and precipitation
 - Conduits for flow between surface water and groundwater
 - Contaminant migration pathways beneath TSF

Source: WMC, 2008

STRATUS CONSULTING

Reduction in flows = reduced habitat for migratory and resident fish EPA-7609-0007122_00011

Site Geochemistry

Water Quality Baseline

- Deposit is an acid-producer
 - "...it would take about 40 years for nearly all pre-Tertiary rock to become acidic under site conditions." (NDM, 2005)
- Low alkalinity (~10-30 mg/L as CaCO₃),
 hardness and DOM
- Higher susceptibility to stream acidification and metal toxicity to fish

Figure Source: SRK Consulting, 2006

STRATUS CONSULTING

waters EPA-7609-0007122_00013

STRATUS CONSULTING

Hardness very low = low buffering capacity and increased Cu toxicity
EPA-7609-0007122_00014

Site-specific Cu Binding Studies

 $L_{\scriptscriptstyle BL}$

- Purpose: Evaluate binding properties of ambient DOM
 - Natural organic matter can bind copper and decrease toxicity to aquatic biota
- EPA has approved use of BLM for Cu acute WQC
 - "Canned" input values for DOM; if site-specific binding varies from assumptions, different toxicity
- TNC laboratory studies of site-specific copper binding in NFK, SFK, UT
 - Pebble Project DOM has less ability to complex Cu than assumed in BLM

BLM Comparison – North Fork Koktuli Site

2-10 times more free Cu with ambient
 DOM than predicted by BLM = increased
 Cu toxicity

STRATUS CONSULTING

Conclusions

- Failure rates at large mines are high mitigation and prediction failures
- Pebble Project area extremely susceptible to adverse effects
 - High acid-generation and contaminant leaching potential, close proximity to water resources and sensitive biota
 - High hydraulic connectivity extensive contaminant transport, reduced ability to control wastes
 - Streams naturally low in components that ameliorate copper toxicity and buffer pH
 - Ambient DOM has less ability to complex Cu than BLM predicts – EPA model will underpredict toxicity to salmonids at this site

STRATUS CONSULTING

Conclusions (cont.)

- Mine plan guarantees irreversible adverse effects
 - Little to no experience with successfully controlling releases from mines of this size
 - Mine facilities will reduce flows, eliminate important salmon habitat, and adversely affect spawning and migration
- Hydrogeologic, geochemical, and ecological attributes of project area indicate that the site has a high degree of vulnerability with virtually no margin for error = high risk to vitally important fisheries

STRATUS CONSULTING

EPA-7609-0007122_00020

Additional work to support 404(c) ruling

- Integration and interpretation of all TNC data
- Biodiversity studies in areas of natural acid drainage
- Streamside copper toxicity study
 - Direct measurement of effects of increasing copper on resident salmonids
- Tailings seepage containment
 - Use recently-obtained bore hole logs to evaluate nature of geologic material and extent of low permeability layer beneath unlined TSF

STRATUS CONSULTING